Peer-Reviewed Publications
2024
Aktypis, A., Kaltsonoudis, C., Patoulias, D., Kalkavouras, P., Matrali, A., Vasilakopoulou, C. N., Kostenidou, E., Florou, K., Kalivitis, N., Bougiatioti, A., Eleftheriadis, K., Vratolis, S., Gini, M. I., Kouras, A., Samara, C., Lazaridis, M., Chatoutsidou, S.-E., Mihalopoulos, N., and Pandis, S. N. (2024) Significant spatial gradients in new particle formation frequency in Greece during summer. Atmos. Chem. Phys., 24(1), 65–84, https://doi.org/10.5194/acp-24-65-2024
Dinkelacker, B. T., Rivera, P. G., Skyllakou, K., Adams, P. J. and Pandis, S. N. (2024) Predicted and observed changes in summertime biogenic and total organic aerosol in the southeast United States from 2001 to 2010. Atmos. Environ., 316, 120186, https://doi.org/10.1016/j.atmosenv.2023.120186
Florou, K., Liangou, A., Kaltsonoudis, C., Louvaris, E., Tasoglou, A., Patoulias, D., Kouvarakis, G., Kalivitis, N., Kourtchev, I., Kalberer, M., Tsagkaraki, M., Mihalopoulos, N., and Pandis S. N. (2024) Chemical characterization and sources of background aerosols in the eastern Mediterranean. Atmos. Environ., 324, 120423, https://doi.org/10.1016/j.atmosenv.2024.120423
Manavi, S. E. I., and Pandis, S. N. (2024) Contribution of intermediate-volatility organic compounds from on-road transport to secondary organic aerosol levels in Europe. Atmos. Chem. Phys., 24 (2), 891–909, https://doi.org/10.5194/acp-24-891-2024
Mylonaki, M., Gini, M., Georgopoulou, M., Pilou, M., Chalvatzaki, E., Solomos, S., Diapouli, E., Giannakaki, E., Lazaridis, M., Pandis, S. N., Nenes, A., Eleftheriadis, K., and Papayannis A. (2024) Wildfire and African dust aerosol oxidative potential, exposure and dose in the human respiratory tract. Sci. Total Environ., 913, 169683, https://doi.org/10.1016/j.scitotenv.2023.169683
Papadopoulos, N. G., Akdis , C. A., Akdis, M., Damialis, A., Esposito, G., Fergadiotou, I., Goroncy, C., Guitton, P., Gotua, M., Erotokritou, K., Jartti, T., Murray, C., Nenes, A., Nikoletseas, S., Finotto, S., Pandis, S. N., Ramiconi, V., Simpson, A., Soudunsaari, A., Stårbröst, A., Staiano, M., Varriale, A., Xepapadaki, P., Zuberbier, T., Annesi-Maesano, I. (2024) SynAir-G Consortium. Addressing adverse synergies between chemical and biological pollutants at schools-The ‘SynAir-G’ hypothesis. Allergy: Eur. J. Allergy Clin. Immunol., 79(2), 294-301, https://doi.org/10.1111/all.15857
Patoulias, D., Florou, K., Pandis, S. N. and Nenes, A. (2024) New Particle Formation Events Can Reduce Cloud Droplets in Boundary Layer Clouds at the Continental Scale. Geophys. Res. Lett., 51 (2), e2023GL106182 https://doi.org/10.1029/2023GL106182
Pavlidis, D., Sippial, D. J., Florou, K., Kostenidou, E., and Pandis, S. N. (2024). Exploring the discrepancies between SMPS and AMS measurements in secondary organic aerosol formation experiments. Aerosol Sci. Technol., 58 (2), 195–205, https://doi.org/10.1080/02786826.2024.2304547
Posner, L. N., and Pandis, S. N. (2024) Effects of Diesel Emissions on Black Carbon and Particle Number Concentrations in the Eastern U.S. Atmosphere, 15 (2), 199, https://doi.org/10.3390/atmos15020199
Siouti, E., Skyllakou, K., Kioutsioukis, I., Patoulias, D., Apostolopoulos, I. D., Fouskas, G., and Pandis, S. N. (2024) Prediction of the Concentration and Source Contributions of PM2.5 and Gas-Phase Pollutants in an Urban Area with the SmartAQ Forecasting System. Atmosphere, 15 (1), 8, https://doi.org/10.3390/atmos15010008
2023
Aktypis, A., Kaltsonoudis, C., Skyllakou, K., Matrali, A., Vasilakopoulou, C. N., Florou, K., and Pandis, S. N. (2023) Infrequent new particle formation in a coastal Mediterranean city during the summer, Atmos. Environ., 302, 119732, https://doi.org/10.1016/j.atmosenv.2023.119732
Apostolopoulos, I.D., Fouskas, G., and Pandis, S.N. (2023) Field Calibration of a Low-Cost Air Quality Monitoring Device in an Urban Background Site Using Machine Learning Models. Atmosphere, 14, 368, https://doi.org/10.3390/atmos14020368
Argyropoulou, G., Patoulias, D., and Pandis, S. N. (2023). Exploring the potential for continuous measurement of ultrafine particle mass concentration (PM0.1) based on measurements of particle number concentration above 50 nm (N50). Aerosol Sci. Technol., 57 (11), 1117–1127, https://doi.org/10.1080/02786826.2023.2249075
Dimitriou, K., Stavroulas, I., Grivas, G., Chatzidiakos, C., Kosmopoulos, G., Kazantzidis, A., Kourtidis, K., Karagioras, A., Hatzianastassiou, N., and Pandis, S.Ν. Intra- and inter-city variability of PM2.5 concentrations in Greece as determined with a low-cost sensor network. Atmos. Environ., 301, 119713, https://doi.org/10.1016/j.atmosenv.2023.119713
Dinkelacker, B. T., Rivera, P. G., Marshall, J. D., Adams, P. J., and Pandis S. N. (2023) High-resolution downscaling of source resolved PM2.5 predictions using machine learning models. Atmos. Environ., 310, 119967, https://doi.org/10.1016/j.atmosenv.2023.119967
Florou, K., Kodros, J. K., Paglione, M., Jorga, S., Squizzato, S., Masiol, M., Uruci, P., Nenes, A., and Pandis, S. N. (2023) Characterization and dark oxidation of the emissions of a pellet stove. Environ. sci. Atmos., 3 (9), 1319-1334, https://doi.org/10.1039/D3EA00070B
Jorga, S. D., Florou, K., Patoulias, D., and Pandis, S. N. (2023) New particle formation and growth during summer in an urban environment: a dual chamber study. Atmos. Chem. Phys., 23, 85–97, https://doi.org/10.5194/acp-23-85-2023
Kakavas, S., Pandis, S. N., and Nenes, A. (2023) Effects of simulated secondary organic aerosol water on PM1 levels and composition over the US. Atmos. Chem. Phys., 23 (21), 13555–13564, https://doi.org/10.5194/acp-23-13555-2023
Kaltsonoudis, C., Zografou, O., Matrali, A., Panagiotopoulos, E., Lekkas, A., Kosmopoulou, M., Papanastasiou, D., Eleftheriadis, K., and Pandis, S.N. (2023) Measurement of atmospheric volatile and intermediate volatility organic compounds: Development of a new time-of-flight mass spectrometer. Atmosphere, 14 (2), 336, https://doi.org/10.3390/atmos14020336
Karnezi, E., Heikkinen, L., Kulmala, M., Pandis, S. N. (2023) Simulating atmospheric Organic Aerosol in the Boreal Forest Using Its Volatility-Oxygen Content Distribution. Atmosphere, 14 (5), 763, https://doi.org/10.3390/atmos14050763
Matrali, A., Kodros, J. K., Papathanasiou, M., Pandis, S. N. (2023) Quantification of the degradation of paintings due to the deposition of atmospheric aerosols. J. Cult. Herit., 62, 322-328 https://doi.org/10.1016/j.culher.2023.06.008
Mermigkis, P. G., Karadima, K. S., Pandis, S. N., Mavrantzas, V. G. Geometric Analysis of Free and Accessible Volume in Atmospheric Nanoparticles. ACS omega, 8 (37), 33481-33492, https://doi.org/10.1021/acsomega.3c03293
Pappa, A., Siouti, E., Pandis, S. N., and Kioutsioukis, I. (2023) High-resolution WRF forecasts in the SmartAQ system: Evaluation of the meteorological forcing used for PMCAMx predictions in an urban area. Atmos. Res., 296, 107041, https://doi.org/10.1016/j.atmosres.2023.107041
Siouti, E., Kilafis, K., Kioutsioukis, I., and Pandis S. N. (2023) Simulation of the influence of residential biomass burning on air quality in an urban area. Atmos. Environ., 309, 119897, https://doi.org/10.1016/j.atmosenv.2023.119897
Sippial, D. J., Uruci, P., Kostenidou, E., Pandis, S. N. (2023) Formation of secondary organic aerosol during the dark-ozonolysis of α-humulene. Environ. Sci. Atmos., 3 (6), 1025-1033, https://doi.org/10.1039/D2EA00181K
Uruci, P., Sippial, D., Drosatou, A., and Pandis, S. N. (2023) Estimation of secondary organic aerosol formation parameters for the volatility basis set combining thermodenuder, isothermal dilution, and yield measurements. Atmos. Meas. Tech., 16 (12), 3155–3172, https://doi.org/10.5194/amt-16-3155-2023
Vasilakopoulou, C. N., Florou, K., Kaltsonoudis, C., Stavroulas, I., Mihalopoulos, N., and Pandis, S. N. (2023) Development and evaluation of an improved offline aerosol mass spectrometry technique. Atmos. Meas. Tech., 16 (11), 2837–2850, https://doi.org/10.5194/amt-16-2837-2023
Vasilakopoulou, C. N., Matrali, A., Skyllakou, K., Georgopoulou, M., Aktypis, A., Florou, K., Kaltsonoudis, C., Siouti, E., Kostenidou, E., Błaziak, A., Nenes, A., Papagiannis, S., Eleftheriadis, K., Patoulias, D., Kioutsioukis, I., and Pandis, S.N. (2023) Rapid transformation of wildfire emissions to harmful background aerosol. Nature PJ Clim Atmos Sci, 6 (1), 218, https://doi.org/10.1038/s41612-023-00544-7
Yazdani, A., Takahama, S., Kodros, J. K., Paglione, M., Masiol, M., Squizzato, S., Florou, K., Kaltsonoudis, C., Jorga, S. D., Pandis, S. N., and Nenes, A. (2023) Chemical evolution of primary and secondary biomass burning aerosols during daytime and nighttime. Atmos. Chem. Phys., 23 (13), 7461–7477, https://doi.org/10.5194/acp-23-7461-2023
2022
Dinkelacker, B. T., Garcia Rivera, P., Kioutsioukis, I., Adams, P. J., and Pandis, S. N. (2022) Evaluation of high-resolution predictions of fine particulate matter and its composition in an urban area using PMCAMx-v2. 0. Geoscientific Model Development, 15, 8899-8912, https://doi.org/10.5194/gmd-15-8899-2022
Garcia Rivera, P., Dinkelacker, B. T., Kioutsioukis, I., Adams, P. J., and Pandis, S. N. (2022) Source-resolved variability of fine particulate matter and human exposure in an urban area. Atmos. Chem. Phys., 22, 2011–2027, https://doi.org/10.5194/acp-22-2011-2022.
Kakavas, S., Pandis, S.N., and Nenes, A. (2022) ISORROPIA-lite: A comprehensive atmospheric aerosol thermodynamics module for Earth System Models, Tellus B, 74, pp.1–23, http://doi.org/10.16993/tellusb.33
Kodros, J.K., Kaltsonoudis, C., Paglione, M., Florou, K., Jorga, S., Vasilakopoulou, C., Cirtog, M., Cazaunau, M., Picquet-Varrault, B., Nenes, A., Pandis, S.N. (2022) Secondary aerosol formation during the dark oxidation of biomass burning emissions, Environmental Science: Atmospheres, 2, 1221-1236, https://doi.org/10.1039/D2EA00031H
Kosmopoulos, G., Salamalikis, V., Matrali, A., Pandis, S. N., and Kazantzidis, A. (2022) Insights about the sources of PM5 in an urban area from measurements of a low-cost sensor network. Atmosphere 2022, 13(3), 440, https://doi.org/10.3390/atmos13030440
Kostenidou, E., Jorga, S., Kodros, J. K., Florou, K., Kołodziejczyk, A., Szmigielski, R., and Pandis, S. N. (2022) Properties and atmospheric oxidation of norpinic acid aerosol. Atmosphere 2022, 13(9), 1481; https://doi.org/10.3390/atmos13091481
Liangou, A., Florou, K., Psichoudaki, M., Kostenidou, E., Tsiligiannis, E., and Pandis, S. N. (2022). A method for the measurement of the water solubility distribution of atmospheric organic aerosols. Sci. & Tech., 56, 3952-3959, https://doi.org/10.1021/acs.est.1c06854
Manavi, S. E., and Pandis, S. N. (2022) A lumped species approach for the simulation of secondary organic aerosol production from intermediate-volatility organic compounds (IVOCs): application to road transport in PMCAMx-iv (v1. 0). Geosci. Model Dev., 15, 7731–7749, https://doi.org/10.5194/gmd-15-7731-2022
Olin, M., Patoulias, D., Kuuluvainen, H., Niemi, J. V., Rönkkö, T., Pandis, S. N., and Dal Maso, M. (2022) Contribution of traffic-originated nanoparticle emissions to regional and local aerosol levels. Atmos. Chem. Phys., 22, 1131–1148, https://doi.org/10.5194/acp-22-1131-2022
Patoulias, D. and Pandis, S. N. (2022) Simulation of the effects of low-volatility organic compounds on aerosol number concentrations in Europe. Atmos. Chem. Phys., 22, 1689–1706, https://doi.org/10.5194/acp-22-1689-2022
Pond, Z. A., Hernandez, C. S., Adams, P. J., Pandis, S. N., Garcia, G. R., Robinson, A. L., Skyllakou, K. Pope III, C. A. (2022) Cardiopulmonary mortality and fine particulate air pollution by species and source in a National US cohort. Environ. Sci. Technol. 2022, 56, 11, 7214–7223, https://doi.org/10.1021/acs.est.1c04176
Siouti, E., Skyllakou, K., Kioutsioukis, I., Patoulias, D., Fouskas, G., and Pandis, S. N. (2022) Development and application of the SmartAQ high-resolution air quality and source apportionment forecasting system for European urban areas. Atmosphere 2022, 13(10), 1693; https://doi.org/10.3390/atmos13101693
Thakrar, S. K., Tessum, C. W., Apte, J. S., Balasubramanian, S., Millet, D. B., Pandis, S. N., and Hill, J. D. (2022) Global, high-resolution, reduced-complexity air quality modeling for PM5 using InMAP (Intervention Model for Air Pollution). PLoS ONE 17(5): e0268714. https://doi.org/10.1371/journal.pone.0268714
Vasilakopoulou, C., Stavroulas, I., Mihalopoulos, N., and Pandis, S. N. (2022) The effect of the averaging period for PMF analysis of Aerosol Mass Spectrometer measurements during off-line applications. Atmos. Meas. Tech., 15, 6419–6431, https://doi.org/10.5194/amt-15-6419-2022
Voliotis, A., Du, M., Wang, Y., Shao, Y., Bannan, T. J., Flynn, M., Pandis, S. N., and McFiggans, G. (2022) The influence of the addition of isoprene on the volatility of particles formed from the photo-oxidation of anthropogenic–biogenic mixtures. Atmos. Chem. Phys., 22, 13677–13693, https://doi.org/10.5194/acp-22-13677-2022
2021
Domingo, N. G., Balasubramanian, S., Thakrar, S. K., Clark, M. A., Adams, P. J., Marshall, J. D., Muller, N. Z., Pandis, S. N., Polasky, S., Robinson, A. L. and Tessum, C. W. (2021) Air quality–related health damages of food. Proc. Nat. Acad. Sci., 118, doi: 10.1073/pnas.2013637118.
Giordano, M. R., Malings, C., Pandis, S. N., Presto, A. A., McNeill, V. F., Westervelt, D. M., Beekmann, M. and Subramanian, R. (2021) From low-cost sensors to high-quality data: A summary of challenges and best practices for effectively calibrating low-cost particulate matter mass sensors. J. Aerosol Science, 158, 105833, doi:10.1016/j.jaerosci.2021.105833.
Kakavas, S. and Pandis, S. N. (2021) Effects of urban dust emissions on fine and coarse PM levels and composition. Atmospheric Environment, 246, 118006, doi:10.1016/j.atmosenv.2020.118006.
Skyllakou, K., Rivera, P. G., Dinkelacker, B., Karnezi, E., Kioutsioukis, I., Hernandez, C., Adams, P. J. and Pandis, S. N. (2021) Changes in PM2.5 concentrations and their sources in the US from 1990 to 2010. Atmospheric Chemistry and Physics, 21, 17115-17132.
Jorga, S. D., Florou, K., Kaltsonoudis, C., Kodros, J. K., Vasilakopoulou, C., Cirtog, M., Fouqueau, A., Picquet-Varrault, B., Nenes, A. and Pandis, S. N. (2021) Nighttime chemistry of biomass burning emissions in urban areas: A dual mobile chamber study. Atmospheric Chemistry and Physics, 21, 15337-15349.
Xu, W., Chen, C., Qiu, Y., Li, Y., Zhang, Z., Karnezi, E., Pandis, S. N., Xie, C., Li, Z., Sun, J. and Ma, N. (2021) Organic aerosol volatility and viscosity in the North China Plain: Contrast between summer and winter. Atmospheric Chemistry and Physics, 21, 5463-5476.
Balasubramanian, S., Domingo, N. G., Hunt, N. D., Gittlin, M., Colgan, K. K., Marshall, J. D., Robinson, A. L., Azevedo, I. M., Thakrar, S. K., Clark, M. A. and Tessum, C. W. (2021) The food we eat, the air we breathe: a review of the fine particulate matter-induced air quality health impacts of the global food system. Environmental Research Letters, 16, 103004.
Paglione, M., Decesari, S., Rinaldi, M., Tarozzi, L., Manarini, F., Gilardoni, S., Facchini, M. C., Fuzzi, S., Bacco, D., Trentini, A., Pandis, S. N., and Nenes A. (2021) Historical changes in seasonal aerosol acidity in the Po Valley (Italy) as inferred from fog water and aerosol measurements. Environmental Science & Technology, 55, 7307–7315.
Kakavas, S., Patoulias, D., Zakoura, M., Nenes, A. and Pandis, S. N. (2021) Size-resolved aerosol pH over Europe during summer. Atmospheric Chemistry and Physics, 21, 799-811.
Dinkelacker, B. T. and Pandis, S. N. (2021) Effect of chemical aging of monoterpene products on biogenic secondary organic aerosol concentrations. Atmospheric Environment, 254, 118381.
Siouti, E., Skyllakou, K., Kioutsioukis, I., Ciarelli, G. and Pandis, S. N. (2021) Simulation of the cooking organic aerosol concentration variability in an urban area. Atmospheric Environment, 265, 118710.
Theodoritsi, G. N., Ciarelli, G. and Pandis, S. N. (2021) Simulation of the evolution of biomass burning organic aerosol with different volatility basis set schemes in PMCAMx-SRv1. 0. Geoscientific Model Development, 14, 2041-2055.
Cain, K. P., Liangou, A., Davidson, M. L. and Pandis, S. N. (2021) α-Pinene, limonene, and cyclohexene secondary organic aerosol hygroscopicity and oxidation level as a function of volatility. Aerosol and Air Quality Research, 21, doi:10.4209/aaqr.2020.08.0511.
Benjdir, M., Audureau, É., Beresniak, A., Coll, P., Epaud, R., Fiedler, K., Jacquemin, B., Niddam, L., Pandis, S. N., Pohlmann, G. and Sandanger, T. M. (2021) Assessing the impact of exposome on the course of chronic obstructive pulmonary disease and cystc fibrosis: The REMEDIA European Project Approach. Environmental Epidemiology, 5, doi:10.1097/EE9.0000000000000165.
Nenes, A., Pandis, S. N., Kanakidou, M., Russell, A. G., Song, S., Vasilakos, P. and Weber, R. J. (2021) Aerosol acidity and liquid water content regulate the dry deposition of inorganic reactive nitrogen. Atmospheric Chemistry and Physics, 21, 6023-6033.
Patoulias, D., Kallitsis, E., Posner, L. and Pandis, S. N. (2021) Modeling biomass burning organic aerosol atmospheric evolution and chemical aging. Atmosphere, 12, 1638, doi:10.3390/atmos12121638.
Voliotis, A., Wang, Y., Shao, Y., Du, M., Bannan, T. J., Percival, C. J., Pandis, S. N., Alfarra, M. R. and McFiggans, G. (2021) Exploring the composition and volatility of secondary organic aerosols in mixed anthropogenic and biogenic precursor systems. Atmospheric Chemistry and Physics, 21, 14251–14273.
2020
Jorga S. D., Kaltsonoudis C., Liangou A., and Pandis S. N. (2020) Measurement of formation rates of secondary aerosol in the ambient urban atmosphere using a dual smog chamber system, Environ. Sci. Tech., 54, 1336-1343.
Masiol M., Squizzato S., Formenton G., Badiuzzaman K. M., Hopke P. K., Nenes A., Pandis S. N., Tositti L., Benetello F., Visin F., and Pavoni B. (2020) Hybrid multiple-site mass closure and source apportionment of PM2.5 and aerosol acidity at major cities in the Po Valley, Sci. Tot. Environ., 704, 135287, doi: 10.1016/j.scitotenv.2019.135287.
Nenes A., Pandis S. N., Weber R. J., and Russell A. (2020) Aerosol pH and liquid water content determine when particulate matter is sensitive to ammonia and nitrate availability, Atmos. Chem. Phys., 20, 3249-3258.
Manousakas M. I., Florou K., and Pandis S. N. (2020) Source apportionment of fine organic and inorganic atmospheric aerosol in an urban background area in Greece, Atmosphere, 11, 330, doi: 10.3390/ atmos11040330.
Cain K. P., Karnezi E., and Pandis S. N. (2020) Challenges in determining atmospheric organic aerosol volatility distributions using thermal evaporation techniques, Aerosol Sci. Tech., 54, 941-957.
Thakrar S. K., Balasubramanian S., Adams P. J., Azevedo I. M. L., Muller N. Z., Pandis S. N., Polasky S., Pope C. A., Robinson A. L., Apte J. S., Tessum C. W., Marshall J. D., Hill J. D. (2020) Reducing mortality from air pollution in the United States by targeting specific emission sources, Environ. Sci. & Tech. Letters, 7, 639-645.
Tasoglou A., Louvaris E., Florou K., Liangou A., Karnezi E., Kaltsonoudis C., Wang N. X., and Pandis S. N. (2020) Aerosol light absorption and the role of extremely low volatility organic compounds, Atmos. Chem. Phys., 20, 11625-11637.
Wang Y. Z., Bechle M. J., Kim S. Y., Adams P. J., Pandis S. N., Pope C. A., Robinson A. L., Sheppard L., Szpiro A. A., and Marshall J. D. (2020) Spatial decomposition analysis of NO2 and PM2.5 air pollution in the United States, Atmos. Environ., 241, 117470, doi:10.1016/ j.atmosenv.2020.117470.
Theodoritsi G. N., Posner L. N., Robinson A. L., Yarwood G., Koo B., Morris R., Mavko M., Moore T. and Pandis S. N. (2020) Biomass burning organic aerosol from prescribed burning and other activities in the United States, Atmos. Environ., 241, 117753, doi: 10.1016/j.atmosenv.2020.117753.
Kosmopoulos G., Salamalikis V., Pandis S. N., Yannopoulos P., Bloutsos A. A., and Kazantzidis A. (2020) Low-cost sensors for measuring airborne particulate matter: Field evaluation and calibration at a South-Eastern European site, Sci. Tot. Environ., 748, 141396, doi: 10.1016/j.scitotenv.2020. 141396.
Kodros J. K., Papanastasiou D. K., Paglione M., Masiol M., Squizzato S., Florou K., Skyllakou K., Kaltsonoudis C., Nenes A., and Pandis S. N. (2020) Rapid dark aging of biomass burning as an overlooked source of oxidized organic aerosol, Proc. Nat. Acad. Sci., 117, 33028-33033.
2019
Masiol, M., Squizzato, S., Formentond, G., Badiuzzaman Khan, M., Hopke, P.K., Nenes, A., Pandis, S.N., Tosittik, L., Visinc, F., Pavonic, B. (2019) Hybrid multiple-site mass closure and source apportionment of PM2.5 and aerosol acidity at major cities in the Po Valley, Sci.Tot.Env., doi: 10.1016/j.scitotenv.2019.135287.
Posner L. N., Theodoritsi G., Robinson A., Yarwood G., Koo B., Morris R., Mavko M., Moore T. and Pandis S. N. (2019) Simulation of fresh and chemically-aged biomass burning organic aerosol, Atmos. Environ., 196, 27-37.
Drosatou A. D., Skyllakou K., Theodoritsi G. N., and Pandis S. N. (2019) Positive matrix factorization of orgnic aerosol: Insights from a chemical transport model, Atmos. Chem. Phys. 19, 973-986.
Theodoritsi G. N. and Pandis S. N. (2019) Simulation of the chemical evolution of biomass burning organic aerosol, Atmos. Chem. Phys., 19, 5403-5415.
Karadima K. S., Mavrantzas V. G., and Pandis S. N. (2019) Insights into the morphology of multicomponent organic and inorganic aerosols from molecular dynamics simulations, Atmos. Chem. Phys., 19, 5571-5587.
Kaltsonoudis C., Jorga S. D., Louvaris E., Florou K., and Pandis S. N. (2019) A portable dual-smog-chamber system for atmospheric aerosol field studies, Atmos. Meas. Tech., 12, 2733-2743.
Xu, W., Xie, C., Karnezi, E., Zhang, Q., Wang, J., Pandis, S. N., Ge, X., Zhang, J., An, J., Wang, Q. and Zhao, J. (2019) Summertime aerosol volatility measurements in Beijing, China. Atmos. Chem. Phys., 19, 10205-10216.
Vratolis S., Gini M. I., Bezentakos S., Stavroulas I., Kalivitis N., Kostenidou E., Louvaris E., Siakavaras D. Biskos G., Mihalopoulos N., Pandis S. N., Pilinis C., Papayannis A., and Eleftheriadis K. (2019) Particle number size distribution statistcs at city-centre, urban background, and remote stations in Greece during summer, Atmos. Environ., 213, 711-726.
Tsiflikiotou M. A., Kostenidou E., Papanastasiou D. K., Patoulias D., Zarmpas P., Paraskevopoulou D., Diapouli E., Kaltsonoudis C., Florou K., Bougiatioti A., Stavroulas I., Theodosi C. Kouvarakis G. Vasilatou V., Siakavaras D., Biskos G., Pilinis C., Eleftheriadis K., Gerasopoulos E., Mihalopoulos N. and Pandis S. N. (2019) Summertime particulate matter and its composition in Greece, Atmos. Environ., 213, 597-607.
Zakoura M. and Pandis S. N. (2019) Improving fine aerosol nitrate predictions using a plume-in-grid modeling approach, Atmos. Environ., 215, 116887.
2018
Li Y., Tasoglou A., Liangou A., Cain K. P., Jahn L., Gu P., Kostenidou E., and Pandis S. N. (2018) Cloud condensation nuclei activity and hygroscopicity of fresh and aged cooking organic aerosol, Atmos. Environ., 176, 103-109.
Julin J., Murphy B. N., Patoulias D., Fountoukis C., Olenius T., Pandis S. N., and Riipinen I. (2018) Impacts of future european emission reductions on aerosol particle number concentrations accounting for effects of ammonia, amines, and organic species, Environ. Sci. Technol., 52, 692-700.
Kostenidou E., Karnezi E., Kolodziejczyk A., Szmigielski R., and Pandis S. N. (2018) Physical and chemical properties of 3-Methyl-1,2,3-butanetricarboxylic acid (MBTCA) aerosol, Environ. Sci. Technol., 52, 1150-1155.
Psichoudaki M., Nenes A., Florou K., Kaltsonoudis C., and Pandis S. N. (2018) Hygroscopic properties of atmospheric particles emitted during wintertime biomass burning episodes in Athens, Atmos. Environ., 178, 66-72.
Karnezi E. , Murphy B. N., Poulain L., Herrmann H., Wiedensohler A., Rubach F., Kiendler-Scharr A., Mentel T. F., and Pandis S. N. (2018) Simulation of atmospheric organic aerosol using its volatility-oxygen content distribution during the PEGASOS 2012 campaign, Atmos. Chem. Phys. Discuss.
Wang N., Kostenidou E., Donahue N. M., and Pandis S. N. (2018) Multi-generation chemical aging of α-pinene ozonolysis by reactions with OH, Atmos. Chem. Phys., 18, 3589-3601.
Tsimpidi A. P., Karydis V. A. , Pozzer A. , Pandis S. N. and Lelieveld J. (2018) ORACLE 2-D (v2.0): An efficient module to compute the volatility and oxygen content of organic aerosol with a global chemistry-climate model, Geosci. Model Dev. Discuss.
Patoulias D., Fountoukis C., Riipinen I., Asmi A., Kumala M., and Pandis S. N. (2018) The size-composition distribution of atmospheric nananoparticles over Europe, Atmos. Chem. Phys. Discuss.
Kostenidou E., Karnezi E., Hite J. R. Jr., Bougiatioti A., Cerully K., Xu Lu, Nga L. Ng, Nenes A., and Pandis S. N. (2018) Organic aerosol in the summertime southeastern United States: components and their link to volatility distribution, oxidation state and hygroscopicity, Atmos. Chem. Phys., 18, 5799-5819.
Zakoura M., Pandis S. N. (2018) Overprediction of aerosol nitrate by chemical transport models: The role of grid resolution, Atmos. Environ., 187, 390-400.
Wang N., Jorga S. D., Pierce J. R., Donahue N. M. and Pandis S. N. (2018) Particle Wall-loss Correction Methods in Smog Chamber Experiments, Atmos. Meas. Tech. Discuss.
Tsimpidi, A. P., V. A. Karydis, S. N. Pandis, and J. Lelieveld (2017) Global-scale combustion sources of organic aerosols: Sensitivity to formation and removal mechanisms, Atmos. Chem. Phys., 17, 7345-7364.
Shiraiwa, M., Y. Li, A. P. Tsimpidi, V. A. Karydis, T. Berkemeier, S. N. Pandis, J. Lelieveld, T. Koop, and U. Poschl (2017) Global distribution of particle phase state in atmospheric secondary organic aerosols, Nature Comm., 8, 15002, doi: 10.1038/ncomms15002
Tasoglou A., G. Saliba, R. Subramanian, and S. N. Pandis (2017) Absorption of chemically aged biomass burning carbonaceous aerosol, J. Aeros. Sci., 113, 141-152.
Florou, K., D. K. Papanastasiou, M. Pikridas, C. Kaltsonoudis, E. Louvaris, G. I. Gkatzelis, D. Patoulias, N. Mihalopoulos, and S. N. Pandis (2017) The contribution of wood burning and other pollution sources to wintertime organic aerosol levels in two Greek cities, Atmos. Chem. Phys., 17, 3145-3163.
Louvaris, E. E., K. Florou, E. Karnezi, D. K. Papanastasiou, G. I. Gkatzelis, and S. N. Pandis (2017) Volatility of source apportioned wintertime organic aerosol in the city of Athens, Atmos. Environ., 158, 138-147.
Kaltsonoudis, C., E. Kostenidou, E. Louvaris, M. Psichoudaki, E. Tsiligiannis, K. Florou, A. Liangou, and S. N. Pandis (2017) Characterization of fresh and aged organic aerosol emissions from meat charbroiling, Atmos. Chem. Phys., 17, 7143-7155.
Karadima, K. S., V. G. Mavrantzas, and S. N. Pandis (2017) Molecular dynamics simulation of the local concentration and structure in multicomponent aerosol nanoparticles under atmospheric conditions, Phys. Chem. Chem. Phys., 19, 16681-16692.
Skyllakou, K., C. Fountoukis, P. Charalampidis, and S. N. Pandis (2017) Volatility-resolved source apportionment of primary and secondary organic aerosol over Europe, Atmos. Environ., 167, 1-10.
Louvaris, E. E., E. Karnezi, E. Kostenidou, C. Kaltsonoudis, and S. N. Pandis (2017) Estimation of the volatility distribution of organic aerosol combining thermodenuder and isothermal dilution measurements, Atmos. Meas. Tech., 10, 3909-3918.
Becerril-Valle, M., Coz, E., Prevot, A. S. H., Mocnik, G., Pandis, S. N., de la Campa, A. M. Sanchez, Alastuey, A., Diaz, E., Perez, R. M., and Artinano, B. (2017) Characterization of atmospheric black carbon and co-pollutants in urban and rural areas of Spain. Atmos. Environ., 169, 36-53.
Cain, K. P. and Pandis, S. N. (2017) A technique for the measurement of organic aerosol hygroscopicity, oxidation level, and volatility distributions. Atmos. Meas. Tech., 10, 4865-4876.
Donahue, N. M., L. N. Posner, D. M. Westervelt, Z. Li, M. Shrivastava, A. A. Presto, R. C. Sullivan, P. J. Adams, S. N. Pandis, and A. L. Robinson (2016) Where did this particle come from? Sources of particle number and mass for human exposure estimates, Issues in Env. Sci. Tech., 42, 35-71.
Kaltsonoudis, C., E. Kostenidou, K. Florou, M. Psichoudaki, and S. N. Pandis (2016) Temporal variability and sources of VOCs in urban areas of the eastern Mediterranean, Atmos. Chem. Phys., 16,14825-14842.
Panagiotopoulou A., P. Charalampidis, C. Fountoukis, C. Pilinis, and S. N. Pandis (2016) Comparison of PMCAMx aerosol optical depth predictions over Europe with AERONET and MODIS measurements, Geosci. Model Develop., 9, 4257-4272.
Baranizadeh E., B. N. Murphy, J. Julin, S. Falahat, C. L. Reddington, A. Arola, L. Ahlm, S. Mikkonen, C. Fountoukis, D. Patoulias, T. Hamburger, A. Laaksonen, S. N. Pandis, H. Vehkamaki, K. E. J. Lehtinen, and I. Riipinen (2016) Implementation of state-of-the-art ternary new-particle formation scheme to the regional chemical transport model PMCAMx-UF in Europe, Geosci. Model. Develop., 9, 2741-2754.
Kiendler-Scharr, A., A. Mensah, E. Friese, D. Topping, E. Nemitz, A. S. H. Prevot, M. Äijälä, J. Allan, F. Canonaco, M. Canagaratna, S. Carbone, M. Crippa, M. Dall Osto, D. A. Day, P. De Carlo, C. F. Di Marco, H. Elbern, A. Eriksson, E. Freney, L. Hao, H. Herrmann, L. Hildebrandt, R. Hillamo, J. L. Jimenez, A. Laaksonen, G. McFiggans, C. Mohr, C. O’Dowd, R. Otjes, J. Ovadnevaite, S. N. Pandis, L. Poulain, P. Schlag, K. Sellegri, E. Swietlicki, P. Tiitta, A. Vermeulen, A. Wahner, D. Worsnop, and H.-C. Wu (2016) Ubiquity of organic nitrates from nighttime chemistry in the European submicron aerosol, Geophys. Res. Lett., 43, 7735-7744.
Diamantopoulou M., K. Skyllakou, and S. N. Pandis (2016) Estimation of the local and long-range contributions to particulate matter levels using continuous measurements in a single background site, Atmos. Environ., 134, 1-9.
Tsimpidi, A. P., V. A. Karydis, S. N. Pandis, and J. Lelieveld (2016) Global combustion sources of organic aerosols: Model comparison with 84 AMS factor-analysis data sets, Atmos. Chem. Phys., 16, 8939-8962.
Pandis, S. N., K. Skyllakou, K. Florou, E. Kostenidou, C. Kaltsonoudis, E. Hasa, and A. A. Presto (2016) Urban particulate matter pollution: A tale of five cities, Faraday Discuss., 189, 277-290.
Fountoukis, C., A. G. Megaritis, K. Skyllakou, P. E. Charalampidis, H. A. D. C. van der Gon, M. Crippa, A. S. H. Prevot, F. Fachinger, A. Wiedensohler, C. Pilinis, and S. N. Pandis (2016) Simulating the formation of carbonaceous aerosol in a European Megacity (Paris) during the MEGAPOLI summer and winter campaigns, Atmos. Chem. Phys., 26, 3727-3741.
Gkatzelis, G. I., D. K. Panastasiou, K. Florou, C. Kaltsonoudis, E. Louvaris, and S. N. Pandis (2016) Measurement of non-volatile particle number size distribution, Atmos. Meas. Tech., 9, 103-114.
Paciga, A., E. Karnezi, E. Kostenidou, L. Hildebrandt, M. Psichoudaki, G. J. Engelhart, B. H. Lee, M. Crippa, A. S. H. Prevot, U. Baltensperger, and S. N. Pandis (2016) Volatility of organic aerosols and its components in the megacity of Paris, Atmos. Chem. Phys., 16, 2013-2023.
Trump, E. R., C. Fountoukis, N. M. Donahue, and S. N. Pandis (2015) Improvement of simulation of fine inorganic PM levels through better descriptions of coarse particle chemistry, Atmos. Environ., 102, 274-281.
Papadakis, G. Z., A. G. Megaritis, and S. N. Pandis (2015) Effects of olive tree branches burning emissions on PM2.5 concentrations, Atmos. Environ., 112, 148-158.
Day M. C., M. Zhang, and S. N. Pandis (2015) Evaluation of the ability of the EC tracer method to estimate secondary organic carbon, Atmos. Environ., 112, 317-325.
Tasoglou A. and S. N. Pandis (2015) Formation and chemical aging of secondary organic aerosol during the b-caryophyllene oxidation, Atmos. Chem. Phys., 15, 6035-6046.
Riipinen, I., N. Rastak, and S. N. Pandis (2015) Connecting the solubility and CCN activation of complex organic aerosols: a theoretical study using solubility distributions, Atmos. Chem. Phys., 15, 6305-6322.
Patoulias, D., C. Fountoukis, I. Riipinen, and S. N. Pandis (2015) The role of organic condensation on ultrafine particle growth during nucleation events, Atmos. Chem. Phys., 15, 6337-6350.
Posner, L. N., and S. N. Pandis (2015) Sources of ultrafine particles in the Eastern United States, Atmos. Environ., 111, 103-112.
Day, M. C., and S. N. Pandis (2015) Effects of a changing climate on summertime fine particulate matter levels in the eastern U.S., J. Geophys. Res., 120, 5706–5720.
Denier van der Gon, H. A. C., R. Bergstrom, C. Fountoukis, S. N. Pandis, D. Simpson, and A. J. H. Visschedijk (2015) Particulate emissions from residential wood combustion in Europe-revised estimates and an evaluation, Atmos. Chem. Phys., 15, 6503-6519.
Fuzzi, S., U. Baltensperger, K. Carslaw, S. Decesari, H. Denier van der Gon, M. C. Facchini, D. Fowler, I. Koren, B. Langford, U. Lohmann, E. Nemitz, S. N. Pandis, I. Riipinen, Y. Rudich, M. Schaap, J. G. Slowik, D. V. Spracklen, E. Vignati, M. Wild, M. Williams, and S. Gilardoni(2015) Particulate matter, air quality and climate: lessons learned and future needs, Atmos. Chem. Phys., 15, 8217-8299.
Hildebrandt, L., A. L. Paciga, K. M. Cerully, A. Nenes, N. M. Donahue, and S. N. Pandis (2015) Formation and aging of secondary organic aerosol from toluene: changes in chemical composition, volatility, and hygroscopicity, Atmos. Chem. Phys., 15, 8301-8313.
Beekmann, M., A. S. H. Prévôt, F. Drewnick, J. Sciare, S. N. Pandis, H. A. C. Denier van der Gon, M. Crippa, F. Freutel, L. Poulain, V. Ghersi, E. Rodriguez, S. Beirle, P. Zotter2, S.-L. von der Weiden-Reinmüller, M. Bressi, C. Fountoukis, H. Petetin, S. Szidat, J. Schneider, A. Rosso, I. El Haddad, A. Megaritis, Q. J. Zhang, V. Michoud, J. G. Slowik, S. Moukhtar, P. Kolmonen, A. Stohl, S. Eckhardt, A. Borbon, V. Gros, N. Marchand, J. L. Jaffrezo, A. Schwarzenboeck, A. Colomb, A. Wiedensohler, S. Borrmann, M. Lawrence, A. Baklanov, and U. Baltensperger (2015) In situ, satellite measurement and model evidence on the dominant regional contribution to fine particulate matter levels in the Paris megacity, Atmos. Chem. Phys., 15, 9577-9591.
Pikridas M., J. Sciare, F. Freutel, S. Crumeyrolle, S.-L. von der Weiden-Reinmüller, A. Borbon, A. Schwarzenboeck, M. Merkel, M. Crippa, E. Kostenidou, M. Psichoudaki, L. Hildebrandt, G. J. Engelhart, T. Petäjä, A. S. H. Prévôt, F. Drewnick, U. Baltensperger, A. Wiedensohler, M. Kulmala, M. Beekmann, and S. N. Pandis (2015) In situ formation and spatial variability of particle number concentration in a European megacity, Atmos. Chem. Phys., 15, 10219-10237.
Kostenidou E., K. Florou, C. Kaltsonoudis, M. Tsiflikiotou, S. Vratolis, K. Eleftheriadis, and S. N. Pandis (2015) Sources and chemical characterization of organic aerosol during the summer in the eastern Mediterranean, Atmos. Chem. Phys., 15, 11355-11371.
Pilinis C., P. E. Charalampidis, N. Mihalopoulos, and S. N. Pandis (2014) Contribution of particulate water to the measured aerosol optical properties of aged aerosol, Atmos. Environ., 82, 144-153.
Fountoukis C., T. Butler, M. G. Lawrence, H. A. C. Denier van der Gon, A. J. H. Visschedijk, C. Pilinis, and S. N. Pandis (2014) Impacts of controlling biomass burning emissions on wintertime carbonaceous aerosol in Europe, Atmos. Environ., 87, 175-182.
Skyllakou K., B. N. Murphy, A. G. Megaritis, C. Fountoukis, and S. N. Pandis (2014) Contributions of local and regional sources to fine PM in the megacity of Paris, Atmos. Chem. Phys., 14, 2343-2352.
Megaritis, A. G., B. N. Murphy, P. N. Racherla, P. J. Adams, and S. N. Pandis (2014) Impact of climate change on mercury concentrations and deposition in the eastern United States, Sci. Total Environ., 487, 299-312.
Bougiatioti A., I. Stavroulas, E. Kostenidou, P. Zarmpas, C. Theodosi, G. Kouvarakis, F. Canonaco, A. S. H. Prevot, A. Nenes, S. N. Pandis, and N. Mihalopoulos (2014) Processing of biomass-burning aerosol in the eastern Mediterranean during summertime, Atmos. Chem. Phys., 14, 4793-4807.
Murphy B. N., N. M. Donahue, A. L. Robinson, and S. N. Pandis (2014) A naming convention for atmospheric organic aerosol, Atmos. Chem. Phys., 14, 5825-5839.
Crippa M., F. Canonaco, V. A. Lanz, M. Äijälä, J. D. Allan, S. Carbone, G. Capes, D. Ceburnis, M. Dall’Osto, D. A. Day, P. F. DeCarlo, M. Ehn, A. Eriksson, E. Freney, L. Hildebrandt Ruiz, R. Hillamo, J. L. Jimenez, H. Junninen, A. Kiendler-Scharr, A.-M. Kortelainen, M. Kulmala, A. Laaksonen, A. A. Mensah, C. Mohr, E. Nemitz, C. O’Dowd, J. Ovadnevaite, S. N. Pandis, T. Petäjä, L. Poulain, S. Saarikoski, K. Sellegri, E. Swietlicki, P. Tiitta, D. R. Worsnop, U. Baltensperger, and A. S. H. Prévôt (2014) Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach, Atmos. Chem. Phys., 14, 6159-6176.
Fountoukis C., A. G. Megaritis, K. Skyllakou, P. E. Charalampidis, C. Pilinis, H. A. C. Denier van der Gon, M. Crippa, F. Canonaco, C. Mohr, A. S. H. Prévôt, J. D. Allan, L. Poulain, T. Petäjä, P. Tiitta, S. Carbone, A. Kiendler-Scharr, E. Nemitz, C. O’Dowd, E. Swietlicki, and S. N. Pandis (2014) Organic aerosol concentration and composition over Europe: insights from comparison of regional model predictions with aerosol mass spectrometer factor analysis, Atmos. Chem. Phys., 14, 9061-9076.
Karnezi E., I. Riipinen, and S. N. Pandis (2014) Measuring the atmospheric organic aerosol volatility distribution: a theoretical analysis, Atmos. Meas. Tech., 7, 2953-2965.
Megaritis, A. G., C. Fountoukis, P. E. Charalampidis, H. A. C. Denier van der Gon, C. Pilinis, and S. N. Pandis (2014) Linking climate and air quality over Europe: effects of meteorology on PM2.5 concentrations, Atmos. Chem. Phys., 14, 10283-10298.
Paciga, A. L., I. Riipinen, and S. N. Pandis (2014) Effect of ammonia on the volatility of organic diacids, Environ. Sci. Technol., 48, 13769-13775.
Tsimpidi A. P., V. A. Karydis, A. Pozzer, S. N. Pandis, and J. Lelieveld (2014) ORACLE (v1.0): module to simulate the organic aerosol composition and evolution in the atmosphere, Geosci. Model Dev., 7, 3153-3172.
Fountoukis C., D. Koraj, H. A. C. D. van der Gon, P. E. Charalampidis, C. Pilinis, and S. N. Pandis (2013) Impact of grid resolution on the predicted fine PM by a regional 3-D chemical transport model, Atmos. Environ, 68, 24-32.
Athanasopoulou E., H. Vogel, B. Vogel, A. P. Tsimpidi, S. N. Pandis, C. Knote, and C. Fountoukis (2013) Modeling the meteorological and chemical effects of secondary organic aerosols during the EUCAARI campaign, Atmos. Chem. Phys., 13, 625-645.
Megaritis, A. G., C. Fountoukis, P. E. Charalampidis, C. Pilinis, and S. N. Pandis (2013) Response of fine particulate matter concentrations to changes of emissions and temperature in Europe, Atmos. Chem. Phys., 13, 3423-3443.
Zhang Q. J., M. Beekmann, et al. (2013) Formation of organic aerosol in the Paris region during the MEGAPOLI summer campaign: evaluation of the volatility-basis-set approach within the CHIMERE model, Atmos. Chem., Phys., 13, 5767-5790.
Donahue N. M., W. Chuang, S. A. Epstein, J. H. Kroll, D. R. Worsnop, A. L. Robinson, P. J. Adams, and S. N. Pandis (2013) Why do organic aerosols exist? Understanding aerosol lifetimes using the two-dimensional volatility basis set, Environ. Chem., 10, 151-157.
Pikridas M., A. Tasoglou, K. Florou, and S. N. Pandis (2013) Characterisation of the origin of fine particulate matter in a medium size urban area in the Mediterranean, Atmos. Environ., 80, 264-274.
Kostenidou E., C. Kaltsonoudis, M. Tsiflikiotou, E. Louvaris, L. M. Russell, and S. N. Pandis (2013) Burning of olive trees : a major organic aerosol source in the Mediterranean, Atmos. Chem. Phys., 13, 8797-8811.
Psichoudaki M. and S. N. Pandis (2013) Atmospheric aerosol water-soluble organic carbon measurement: A theoretical analysis, Environ. Sci. Tech., 47, 9791-9798.
Pandis S. N., N. M. Donahue, B. N. Murphy, I. Riipinen, C. Fountoukis, E. Karnezi, D. Patoulias, and K. Skyllakou (2013) Atmospheric organic aerosols: insights from the combination of measurements chemical transport models, Faraday Discuss., doi: 10.1039/c3fd00108c.
Ahlm L., J. Julin, C. Fountoukis, S. N. Pandis, and I. Riipinen (2013) Particle number concentrations over Europe in 2030: the role of emissions and new particle formation, Atmos. Chem. Phys., 13, 10271-10283.
Adams P. J., N. M. Donahue, and S. N. Pandis (2013) Atmospheric nanoparticles and climate change, AICHE J., 59, 4006-4019.
Engelhart, G. J., Hennigan, C. J., Miracolo, M. A., Robinson, A. L., and Pandis, S. N..(2012): Cloud condensation nuclei activity of fresh primary and aged biomass burning aerosol, Atmos. Chem. Phys.,12, 7285-7293.
Fountoukis, C., Riipinen, I., Denier van der Gon, H. A. C., Charalampidis, P. E., Pilinis, C., Wiedensohler, A., O’Dowd, C., Putaud, J. P., Moerman, M., and Pandis, S. N..(2012): Simulating ultrafine particle formation in Europe using a regional CTM: contribution of primary emissions versus secondary formation to aerosol number concentrations, Atmos. Chem. Phys.,12, 8663-8677.
Hennigan, C. J., D. M. Westervelt, I. Riipinen, G. J. Engelhart, T. Lee, J. L. Collett Jr., S. N. Pandis, P. J. Adams, and A. L. Robinson (2012), New particle formation and growth in biomass burning plumes: An important source of cloud condensation nuclei, Geophys. Res. Lett.,39.
Kerminen, V.-M., Paramonov, M., Anttila, T., Riipinen, I., Fountoukis, C., Korhonen, H., Asmi, E., Laakso, L., Lihavainen, H., Swietlicki, E., Svenningsson, B., Asmi, A., Pandis, S. N., Kulmala, M., and Petäjä, T. (2012) : Cloud condensation nuclei production associated with atmospheric nucleation: a synthesis based on existing literature and new results,Atmos. Chem. Phys.,12, 12037-12059.
Murphy, B. N., Donahue, N. M., Fountoukis, C., Dall’Osto, M., O’Dowd, C., Kiendler-Scharr, A., and Pandis, S. N. (2012) : Functionalization and fragmentation during ambient organic aerosol aging: application of the 2-D volatility basis set to field studies, Atmos. Chem. Phys., 12,10797-10816.
Fountoukis C., Dh. Koraj , H.A.C. Denier van der Gon , P.E. Charalampidis , C. Pilinis and S.N. Pandis..(2012) : Impact of grid resolution on the predicted fine PM by a regional 3-D chemical transport model. Atmos. Environ., 68, 24-32.
Pikridas M., I. Riipinen, L. Hildebrandt, E. Kostenidou, H. Manninen, N. Mihalopoulos, N. Kalivitis, J. F. Burkhart, A. Stohl, M. Kulmala, and S. N. Pandis (2012): New particle formation at a remote marine site in the Eastern Mediterranean, J. Geophys. Res., 117.
Zhang, X and Pandis, S N. and Seinfeld, J H. (2012): Diffusion-Limited Versus Quasi-Equilibrium Aerosol Growth. Aerosol Science and Technology, 46 ,874-885.
Chacon-Madrid HJ, Murphy BN, Pandis SN, Donahue NM.(2012):Simulations of smog-chamber experiments using the two-dimensional volatility basis set: linear oxygenated precursors.Environ. Sci. Technol., 46,11179–11186.
Donahue, N. M., Kroll, J. H., Pandis, S. N., and Robinson, A. L.(2012): A two-dimensional volatility basis set – Part 2: Diagnostics of organic-aerosol evolution, Atmos. Chem. Phys., 12 , 615-634.
Wagstrom K. M. and S. N. Pandis (2011) Source-receptor relationships for fine particulate matter concentrations in the Eastern United States,Atmos. Environ., 45, 347-356.
Engelhart G. J., R. H. Moore, A. Nenes, S. N. Pandis (2011) Cloud condensation nuclei activity of isoprene secondary organic aerosol, J. Geophys. Res., 116, D02027.
Engelhart G. J., L. Hildebrandt, E. Kostenidou, N. Mihalopoulos, N. M. Donahue, and S. N. Pandis (2011) Water content of aged aerosol, Atmos. Chem. Phys., 11, 911-920.
Donahue N. M., S. A. Epstein, S. N. Pandis, and A. L. Robinson (2011) A two-dimensional volatility basis set: Organic-aerosol mixing thermodynamics, Atmos. Chem. Phys., 11, 3303-3318.
Lee B. H., J. R. Pierce, G. J. Engelhart, and S. N. Pandis (2011) Volatility of secondary organic aerosol from the ozonolysis of monoterpenes, Atmos. Environ., 45, 2443-2452.
Wagstrom K. M. and S. N. Pandis (2011) Contribution of long range transport to local fine particulate matter concerns, Atmos. Environ., 45, 2730-2735.
Roy A. A., K. M. Wagstrom, P. J. Adams, S. N. Pandis, and A. L. Robinson (2011) Quantification of the effects of molecular marker oxidation on source apportionment estimates for motor vehicles, Atmos. Environ., 45, 3132-3140.
Li G., M. Zavala, W. Lei, A. P. Tsimpidi, V. A. Karydis, S. N. Pandis, M. R. Caragatna, and L. T. Molina (2011) Simulations of organic aerosol concentrations in Mexico City using the WRF-CHEM model during the MCMA-2006/MILAGRO campaign, Atmos. Chem. Phys., 11, 3789-3809.
Riipinen I., J. R. Pierce, T. Yli-Juuti, T. Nieminen, S. Hakkinen, M. Ehn, H. Junninen, K. Lehtipalo, T. Petaja, J. Slowik, R. Chang, N. C. Shantz, J. Abbatt, W. R. Leaitch, V.-M. Kerminen, D. R. Worsnop, S. N. Pandis, N. M. Donahue, and M. Kulmala (2011) Organic condensation: A vital link connecting aerosol formation to cloud condensation nuclei (CCN) concentrations, Atmos. Chem. Phys., 11, 3865-3878.
Tsimpidi A. P., V. A. Karydis, M. Zavala, W. Lei, N. Bei, L. Molina, and S. N. Pandis (2011) Sources and production of organic aerosol in Mexico City: Insights from the combination of a chemical transport model (PMCAMx-2008) and measurements during MILAGRO, Atmos. Chem. Phys., 11, 5153-5168.
Murphy B. N., N. M. Donahue, C. Fountoukis, and S. N. Pandis (2011) Simulating the oxygen content of ambient organic aerosol with the 2D volatility basis set, Atmos. Chem. Phys., 11., 7859-7873.
Hildebrandt L., K. M. Henry, J. H. Kroll, D. R. Worsnop, S. N. Pandis, and N. M. Donahue (2011) Evaluating the mixing of organic aerosol components using High-Resolution Aerosol Mass Spectrometry, Environ. Sci. Technol., 45, 6329-6335.
Bougiatioti A., A. Nenes, C. Fountoukis, N. Kalivitis, S. N. Pandis, and N. Mihalopoulos (2011) Size-resolved CCN distributions and activation kinetics of aged continental and marine aerosol, Atmos. Chem. Phys., 11, 8791-8808.
Day M. C. and S. N. Pandis (2011) Predicted changes in summertime organic aerosol concentrations due to increased temperatures, Atmos. Environ., 45, 6546-6556.
Fountoukis C., P. N. Racherla, H. A. C. Denier van der Gon, P. Polymeneas, P. E. Charalambidis, C. Pilinis, A. Wiedensohler, M. Dall’Osto, C. O’Dowd and S. N. Pandis (2011) Evaluation of a three-dimensional chemical transport model (PMCAMx) in the European domain during the EUCAARI May 2008 campaign, Atmos. Chem. Phys., 11, 10331-10347.
Hildebrandt L., E. Kostenidou, V. A. Lanz, A. S. H. Prevot, U. Baltensperger, N. Mihalopoulos, A. Laaksonen, N. M. Donahue, and S. N. Pandis (2011) Sources and atmospheric processing of organic aerosol in the Mediterranean: Insights from aerosol mass spectrometer factor analysis, Atmos. Chem. Phys., 11, 12499-12515.
Kulmala M., A. Asmi, H. K. Lappalainen, U. Baltensperger, J.-L. Brenguier, M. C. Facchini, H.-C. Hansson, Ø. Hov, C. D. O’Dowd, U. Poschl, A. Wiedensohler, et al., and S. N. Pandis (2011) General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI)-integrating aerosol research from nano to global scales, Atmos. Chem. Phys., 11, 13061-13143.
Karydis V. A., A. P. Tsimpidi, W. Lei, L. T. Molina, and S. N. Pandis (2011) Formation of semivolatile inorganic aerosols in the Mexico City Metropolitan Area during the MILAGRO campaign, Atmos. Chem. Phys., 11, 13305-13323.
Murphy B. N. and S. N. Pandis (2010) Exploring summertime organic aerosol formation in the eastern United States using a regional-scale budget approach and ambient measurements, J. Geophys. Res., 115, D24216.
Lee B. H., E. Kostenidou, L. Hildebrandt, I. Riipinen, G. J. Engelhart, C. Mohr, P. F. DeCarlo, N. Mihalopoulos, A. S. H. Prevot, U. Baltensperger, and S. N. Pandis (2010) Measurement of the ambient organic aerosol volatility distribution: Application during the Finokalia Aerosol Measurement Experiment (FAME-2008), Atmos. Chem. Phys, 10, 12149-12160.
Hildebrandt L., E. Kostenidou, N. Mihalopoulos, D. R. Worsnop, N. M. Donahue, and S. N. Pandis (2010) Formation of highly oxygenated organic aerosol in the atmosphere: Insights from the Finokalia Aerosol Measurement Experiments, Geophys. Res. Lett., 37, L23801.
Coz E., B. Artenano, L. M. Clark, M. Hernandez, A. L. Robinson, G. S. Casuccio, and S. N. Pandis (2010) Seasonal variations of fine primary biogenic aerosol particles in Pittsburgh, Atmos. Environ., 44, 3952-3962.
Pikridas M., A. Bougiatioti, L. Hildebrandt, G. Engelhart, E. Kostenidou, C. Mohr, A. S. H. Prevot, G. Kouvarakis, P. Zarmpas, J. F. Burkhart, B. H. Lee, M. Psichoudaki, N. Mihalopoulos, C. Pilinis, A. Stohl, U. Baltensperger, M. Kulmala and S. N. Pandis (2010) The Finokalia Aerosol Measurement Experiment-2008 (FAME-08): An overview, Atmos. Chem. Phys., 10, 6793-6806.
Hildebrandt L., G. J. Engelhart, C. Mohr, E. Kostenidou, V. A. Lanz, A. Bougiatioti, P. F. DeCarlo, A. S. H. Prevot, U. Baltensperger, N. Mihalopoulos, N. M. Donahue and S. N. Pandis (2010) Aged organic aerosol in the Eastern Mediterranean: the Finokalia aerosol measurement experiment-2008, Atmos. Chem. Phys., 10, 4167-4186
Farina S. C., P. J. Adams, and S. N. Pandis (2010) Modeling global secondary organic aerosol formation and processing with the volatility basis set: implications for anthropogenic SOA, J. Geophys. Res., 115, D09202.
Jung, J. G., C. Fountoukis, P. J. Adams, and S. N. Pandis (2010) Simulation of in-situ ultrafine particle formation in the Eastern United States using PMCAMx-UF, J. Geophys. Res., 115, D03203.
Karydis V. A., A. P. Tsimpidi, C. Fountoukis, A. Nenes, M. Zavala, W. Lei, L. T. Molina, and S. N. Pandis (2010) Simulating the fine and coarse inorganic particulate matter concentrations in a polluted Megacity, Atmos. Environ, 44, 608-620.
Riipinen I., J. R. Pierce, N. M. Donahue, and S. N. Pandis (2010) Equilibration time scales of organic aerosol inside thermodenuders: Evaporation kinetics versus thermodynamics, Atmos. Environ., 44, 597-607.
Tsimpidi A. P., V. A. Karydis, M. Zavala, L. Molina, I. Ulbrich, J. L. Jimenez, and S. N. Pandis (2010) Evaluation of the volatility basis-set approach for the simulation of organic aerosol formation in the Mexico City metropolitan area, Atmos. Chem. Phys., 10, 525-546.
Weaver et al. (2009) A preliminary synthesis of modeled climate change impacts on US regional ozone concentrations, Bull. Amer. Meteor. Soc., 90, 1843-1863.
Bougiatioti A., C. Fountoukis, N. Kalivitis, S. N. Pandis, A. Nenes, and N. Mihalopoulos (2009) Cloud condensation nuclei measurements in the eastern Mediterranean marine boundary layer: CCN closure and droplet growth kinetics, Atmos. Chem. Phys., 9, 7053-7066.
Wagstrom K. M. and S. N. Pandis (2009) Determination of the age distribution of primary and secondary aerosol species using a chemical transport model, J. Geophys. Res., 114, D14303.
Kostenidou E., B. H. Lee, G. J. Engelhart, J. R. Pierce, and S. N. Pandis (2009) Mass spectra deconvolution of low, medium, and high volatility biogenic secondary organic aerosol, Environ. Sci. Tech., 43, 4884-4889.
Hildebrandt L., N. M. Donahue, and S. N. Pandis (2009) High formation of secondary organic aerosol from the photo-oxidation of toluene, Atmos. Chem. Phys., 9, 2973-2986.
Murphy B. N. and S. N. Pandis (2009) Simulating the formation of semivolatile primary and secondary aerosol in a regional chemical transport model, Environ. Sci. Tech., 43, 4722-4728.
Kulmala M., A. Asmi, H. K. Lappalainen, K. S. Carslaw, U. Pöschl, U. Baltensperger, Ø. Hov, J. L. Brenquier, S. N. Pandis, M. C. Facchini, H. C. Hansson, A. Wiedensohler, and C. D. O’Dowd (2009) Introduction: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI)-integrating aerosol research from nano to global scales, Atmos. Chem. Phys., 9, 2825-2841.
Dawson J. P., P. N. Racherla, B. H. Lynn, P. J. Adams, and S. N. Pandis (2009) Impacts of climate change on regional and urban air quality in the Eastern US: the role of meteorology, J. Geophys. Res., 114, D05308, doi:10.1029/2008JD009849.
Pierce J. R., G. Theodoritsi, P. J. Adams, and S. N. Pandis (2009) Parameterization of the effect of sub-grid scale aerosol dynamics on aerosol number emission rates, J. Aerosol Science, 40, 385-393.
Asa-Awuku A., G. J. Engelhart, B. H. Lee, S. N. Pandis, and A. Nenes (2009) Relating CCN activity, volatility, and droplet growth kinetics of b-caryophyllene secondary organic aerosol, Atmos. Chem. Phys., 9, 795-812.
Donahue N. M., A. L. Robinson, and S. N. Pandis (2009) Atmospheric organic particulate matter: From smoke to secondary organic aerosol, Atmos. Environ., 43, 97-109.
Tsimpidi A. P., V. A. Karydis, and S. N. Pandis (2008) Response of fine particulate matter to emission changes of NOx and anthropogenic VOCs, J. Air Waste Manag. Assoc., 58, 1463-1473.
Athanasopoulou E., M. Tombrou, S. N. Pandis, and A. G. Russell (2008) The role of sea-salt emissions and heterogeneous chemistry in the air quality of polluted coastal areas, Atmos. Chem. Phys., 8, 5755-5769.
Lane T. E., N. M. Donahue, and S. N. Pandis (2008) Simulating secondary organic aerosol formation using the volatility basis-set approach in a chemical transport model, Atmos. Environ., 42, 7439-7451.
Pierce J. R., G. J. Engelhart, E. A. Weitkamp, R. K. Pathak, S. N. Pandis, N. M. Donahue, A. L. Robinson, and P. J. Adams (2008) Constraining particle evolution from wall losses, coagulation and condensation-evaporation in smog-chamber experiments: optimal estimation based on size distribution measurements, Aerosol Sci. Tech., 42, 1001-1015.
Shrivastava M. K., T. E. Lane, N. M. Robinson, S. N. Pandis, and A. L. Robinson (2008) Effects of gas-particle partitioning and aging of primary emissions on urban and regional organic aerosol concentrations, J. Geophys. Res., 113, D18301.
Lane T. E., N. M. Donahue, and S. N. Pandis (2008) Effect of NOx on secondary organic aerosol concentrations, Environ. Sci. Tech., 42, 6022-6027.
Wagstrom K. M., S. N. Pandis, G. Yarwood, G. M. Wilson, and R. E. Morris (2008) Development and application of a computationally efficient particulate matter apportionment algorithm in a three-dimensional Chemical Transport Model, Atmos. Environ., 42, 5650-5659.
Engelhart G. J., A. Asa-Awuku, A. Nenes, and S. N. Pandis (2008) CCN activity and droplet growth kinetics of fresh and aged monoterpene secondary organic aerosol, Atmos. Chem. Phys., 8, 3937-3949.
Dawson J. P., P. N. Racherla, B. H. Lynn, P. J. Adams, and S. N. Pandis (2008) Simulating present-day and future air quality as climate changes, Atmos. Environ., 42, 4551-4566.
Pathak R. K., N. M. Donahue, and S. N. Pandis (2008) Ozonolysis of b-pinene: Temperature dependence of secondary organic aerosol mass fraction, Environ. Sci. Tech., 42, 5081-5086.
Jung, J. G., P. J. Adams, and S. N. Pandis (2008) Evaluation of nucleation theories in a sulfur-rich environment, Aerosol Sci. Tech., 42, 495-504.
Stanier C. O., N. Donahue, and S. N. Pandis (2008) Parameterization of secondary organic aerosol mass fractions from smog chamber data, Atmos. Environ., 42, 2276-2299.
Coz E., B. Artinano, A. L. Robinson, G. S. Casuccio, T. L. Lersch, and S. N. Pandis (2008) Individual particle morphology and acidity, Aerosol Sci. Tech., 42, 224-232.
Tsimpidi A. P., V. A. Karydis, and S. N. Pandis (2007) Response of fine particulate matter to emission changes of SO2 and NH3 in the Eastern United States, J. Air Waste Manag. Assoc., 57, 1489-1498.
Kostenidou R., R. K. Pathak, and S. N. Pandis (2007) An algorithm for the calculation of secondary organic aerosol density combining AMS and SMPS data, Aeros. Sci. Tech., 41, 1002-1010.
Pathak R. K., A. A. Presto, T. E. Lane, C. O. Stanier, N. M. Donahue, and S. N. Pandis (2007) Ozonolysis of a-pinene: Parameterization of secondary organic aerosol mass fraction, Atmos. Chem. Phys., 7, 3811-3821.
Dawson J. P., P. J. Adams, and S. N. Pandis (2007) Sensitivity of PM2.5 to climate in the Eastern US: a modelling case study, Atmos. Chem. Phys., 7, 4295-4309.
Karydis V. A., A. P. Tsimpidi, and S. N. Pandis (2007) Evaluation of a three-dimensional chemical transport model (PMCAMx) in the Eastern United States for all four seasons, J. Geophys. Res., 112, D14211.
Lane T. E., R. W. Pinder, M. Shrivastava, A. L. Robinson, and S. N. Pandis (2007) Source contributions to primary organic aerosol: Comparison of the results of a source-resolved model and the Chemical Mass balance approach, Atmos. Environ., 41, 3758-3776.
Lane T. E. and S. N. Pandis (2007) Predicted secondary organic aerosol concentrations from the oxidation of isoprene in the Eastern United States, Environ. Sci. Tech., 41, 3984-3990.
Stanier C. O., R. K. Pathak, and S. N. Pandis (2007) Measurements of the volatility of aerosols from a-pinene ozonolysis, Environ. Sci. Tech., 41, 2756-2763.
Takahama S., R. K. Pathak, and S. N. Pandis (2007) Efflorescence transitions of ammonium sulfate particles coated with secondary organic aerosol, Environ. Sci. Tech., 41, 2289-2295.
Dawson J. P., P. J. Adams, and S. N. Pandis (2007) Sensitivity of ozone to summertime climate in the eastern US: A modeling case study, Atmos. Environ., 41, 1494-1511.
An W. J., R. K. Pathak, B. H. Lee, and S. N. Pandis (2007) Aerosol volatility measurement using an improved thermodenuder: Application to secondary organic aerosol, J. Aeros. Sci., 38, 305-314.
Robinson A. L., N. M. Donahue, M. K. Shrivastava, E. A. Wietkamp, A. M. Sage, A. P. Grieshop, T. E. Lane, S. N. Pandis, and J. R. Pierce (2007) Rethinking organic aerosols: Semivolatile emissions and photochemical aging, Science, 315, 1259-1262.
Pathak R. K., C. O. Stanier, N. M. Donahue, and S. N. Pandis (2007) Ozonolysis of a-pinene at atmospherically relevant concentrations: Temperature dependence of aerosol mass fractions (yields), J. Geophys. Res., 112, doi:10.1029/2006JD007436.
Pinder R. W., P. J. Adams, and S. N. Pandis (2007) Ammonia emission controls as a cost-effective strategy for reducing atmospheric particulate matter in the eastern United States, Environ. Sci. Tech., 41, 380-386.
Gaydos T. M., R. Pinder, B. Koo, K. M. Fahey, G. Yarwood, and S. N. Pandis (2007) Development and application of a three-dimensional aerosol chemical transport model, PMCAMx, Atmos. Environ., 12, 2594-2611.
Zhang J. Y., K. E. Huff-Hartz, S. N. Pandis, and N. M. Donahue (2006) Secondary organic aerosol formation from limonene ozonolysis: Homogeneous and heterogeneous influences as a function of NOx, J. Phys. Chem. A, 110, 11053-11063.
Pinder R. W., P. J. Adams, S. N. Pandis, and A. B. Gilliland (2006) Temporally resolved ammonia emission inventories: Current estimates, evaluation tools, and measurement needs, J. Geophys. Res., 111, D16310.
Polidori A., B. J. Turpin, H. J. Lim, J. C. Cabada, R. Subramanian, S. N. Pandis, and A. L. Robinson (2006) Local and regional secondary organic aerosol: Insights from a year of semi-continuous carbon measurements at Pittsburgh, Aeros. Sci. Tech., 40, 861-872.
Donahue N. M., A. L. Robinson, C. O. Stanier and S. N. Pandis (2006) Coupled partitioning, dilution, and chemical aging of semivolatile organics, Environ. Sci. Tech., 40, 2635-2643.
Takahama S., C. I. Davidson, and S. N. Pandis (2006) Semi-continuous measurements of organic carbon and acidity during the Pittsburgh Air Quality Study: Implications of acid-catalyzed organic aerosol formation, Environ. Sci Tech., 40, 2191-2199.
Jung J. G., P. J. Adams, and S. N. Pandis (2006) Simulating the size distribution and chemical composition of ultrafine particles during nucleation events, Atmos. Environ., 40, 2248-2259.
Huff-Hartz K. E., J. E. Tischuk, M. N. Chan, C. K. Chan, N. M. Donahue, and S. N. Pandis (2006) Cloud condensation nuclei activation of limited solubility organic aerosol, Atmos. Environ., 40, 605-617.
Donahue N. M., K. E. Huff Hartz, B. Chuong, A. A. Presto, C. O. Stanier, T. Rosenorn, A. L. Robinson, and S. N. Pandis (2005) Critical factors determining the variation in SOA yields from terpene ozonolysis: A combined experimental and computational study, Faraday Discuss., 130, 295-309.
Vayenas D. V., S. Takahama, C. I. Davidson, and S. N. Pandis (2005) Simulation of the thermodynamics and removal processes in the sulfate-ammonia-nitric acid system during winter: Implications for PM2.5 control strategies, J. Geophys. Res. , 110, D07S14.
Huff Hartz K. E., T. Rosenorn, S. R. Ferchak, T. M. Raymond, M. Bilde, N. M. Donahue, and S. N. Pandis (2005) Cloud condensation nuclei activation of monoterpene and sesquiterpene secondary organic aerosol, J. Geophys. Res., 110, D14208.
Zhou L. M., P. K. Hopke, C. O. Stanier, S. N. Pandis, J. M. Ondov, and J. P. Pancras (2005) Investigation of the relationship between chemical composition and size distribution of airborne particles by partial least squares and positive matrix factorization, J. Geophys. Res., 110, D07S18
Zhou L., E. Kim, P. K. Hopke, C. Stanier, and S. N. Pandis (2005) Mining airborne particulate size distribution data by positive matrix factorization, J. Geophys. Res., 110, D07S19.
Kanakidou M., J. H. Seinfeld, S. N. Pandis, et al. (2005) Organic aerosol and global climate modelling : A review, Atmos. Chem. Phys., 5, 1053-1123.
Khystov A., Q. Zhang, J. L. Jimenez, C. O. Stanier, S. N. Pandis, M. R. Canagaratna, P. Fine, C. Misra, and C. Sioutas (2005) In situ concentration of semi-volatile aerosol using water condensation technology, J. Aerosol Sci., 36, 866-880.
Fahey K. M., S. N. Pandis, J. L. Collett, and P. Herckes (2005) The influence of size-dependent droplet composition on pollutant processing by San Joaquin Valley fogs, Atmos. Environ., 39, 4561-4574.
Gaydos T. M., C. O. Stanier, and S. N. Pandis (2005) Modeling of in situ ultrafine atmospheric particle formation in the eastern United States, J. Geophys. Res., 110, D07S12.
Millet D. B., N. M. Donahue, S. N. Pandis, A. Polidori, C. O. Stanier, B. J. Turpin, and A. H. Goldstein (2005) Atmospheric VOC measurements during the Pittsburgh Air Quality Study: Results, interpretation, and quantification of primary and secondary contributions, J. Geophys. Res., 110, D07S07.
Khlystov A. Y., C. O. Stanier, and S. N. Pandis (2005) Water content of ambient aerosol during the Pittsburgh Air Quality Study, J. Geophys. Res., 110, D07S10.
Zhang Q., Stanier, C., Canagaratna, M., Jayne, J., Worsnop, D., Pandis, S. and Jimenez, J. (2004) Insights into Nucleation Burst and Particle Growth in Pittsburgh Based on Aerosol Mass Spectrometry. Environmental Science & Technology, 38, 4797-4809.
Tang W., T. Raymond, B. Wittig, C. Davidson, S. N. Pandis, A. Robinson, and K. Crist (2004) Spatial variations of PM2.5 during the Pittsburgh Air Quality Study, Aerosol Sci. Technol., 38, 80-90.
Cabada J. C., A. Khlystov, B. Wittig, C. Pilinis, and S. N. Pandis (2004) Light scattering by fine particles during PAQS: Measurements and modeling, J. Geophys. Res., 109, D16S03.
Takahama S., D. Vayenas, S. N. Pandis, and C. Davidson (2004) Modeling the diurnal variation of nitrate during the Pittsburgh air quality study, J. Geophys. Res., 109, D16S06.
Cabada J. C., S. Rees, S. Takahama, A. Y. Khlystov, S. N. Pandis, C. I. Davidson, and A. L. Robinson (2004) Mass size distributions and size resolved chemical composition of fine particulate matter at the Pittsburgh Supersite, Atmos. Environ., 38, 3127-3141.
Stanier C. O., A. Y. Khlystov, and S. N. Pandis (2004) Ambient aerosol size distributions and number concentrations measured during the Pittsburgh Air Quality Study, Atmos. Environ., 38, 3275-3284.
Wittig A. E., N. Anderson, A. Y. Khlystov, S. N. Pandis, C. Davidson and A. L. Robinson (2004) Pittsburgh Air Quality Study overview, Atmos. Environ., 38, 3107-3125.
Wittig A. E., S. Takahama, A. Y. Khlystov, S. N. Pandis, S. Hering, B. Kirby, and C. Davidson (2004) Semi-continuous PM2.5 inorganic composition measurements during the Pittsburgh Air Quality Study, Atmos. Environ., 38, 3201-3213.
Rees S. L., A. L. Robinson, A. Khlystov, C. O. Stanier, and S. N. Pandis (2004) Mass balance closure and the PM2.5 Federal Reference Method in Pittsburgh, Pennsylvania, Atmos. Environ., 38, 3305-3318.
Zhou L., E. Kim, P. K. Hopke, C. O. Stanier, and S. N. Pandis (2004) Advanced Factor Analysis on Pittsburgh particle size distribution data, Aerosol Sci. Technol., 38S, 118-132.
Khlystov A., C. O. Stanier, and S. N. Pandis (2004) An algorithm for combining electrical mobility and aerodynamic size distributions when measuring ambient aerosol, Aerosol Sci. Technol., 38S, 215-228.
Stanier C. O., A. Y. Khlystov, W. R. Chan, M. Mandiro, and S. N. Pandis (2004) A method for the in-situ measurement of aerosol water content of ambient aerosols: The Dry Ambient Aerosol Size Spectrometer (DAASS), Aerosol Sci. Technol., 38S, 215-228.
Cabada J. C., S. N. Pandis, R. Subramanian, A. L. Robinson, A. Polidori, and B. Turpin (2004) Estimating the secondary organic aerosol contribution to PM2.5 using the EC tracer method, Aerosol Sci. Technol., 38S, 140-155.
Stanier C. O., A. Y. Khlystov, and S. N. Pandis (2004) Nucleation events during the Pittsburgh Air Quality Study: Description and relation to key meteorological, gas phase, and aerosol parameters, Aerosol Sci. Technol., 38S, 253-264.
Zhang Y., B. Pun, K. Vijayaraghavan, S. Y. Wu, C. Seigneur, S. N. Pandis, M. Jacobson, A. Nenes, and J. H. Seinfeld (2004) Development and application of the Model for Aerosol Dynamics, Reaction, Ionization, and Dissolution (MADRID), J. Geophys. Res., 109, No. D01202.
Gaydos T. M., B. Koo. S. N. Pandis and D. P. Chock (2003) Development and application of an efficient moving sectional approach for the solution of the atmospheric aerosol condensation/evaporation equation, Atmos. Environ., 37, 3303-3316.
Pun B., S. Y. Wu, S. Seigneur, J. H. Seinfeld, R. J. Griffin, and S. N. Pandis (2003) Uncertainties in modeling secondary organic aerosols: Three dimensional modeling studies in Nashville/Western Tenessee, Environ. Sci. Technol., 37, 3647-3661.
Raymond T. M. and S. N. Pandis (2003) Formation of cloud droplets by multicomponent organic particles, J. Geophys. Res., 108, No. 4469.
Fahey K. M. and S. N. Pandis (2003) Size-resolved aqueous-phase chemistry in a three-dimensional chemical transport model, J. Geophys. Res., 108, No. 4690.
Koo B. Y., A. S. Ansari, and S. N. Pandis (2003) Integrated approaches to modeling the organic and inorganic atmospheric aerosol components, Atmos. Environ., 37, 4757-4768.
Koo B., T. M. Gaydos, and S. N. Pandis (2003) Evaluation of the equilibrium, dynamic, and hybrid aerosol modeling approaches, Aerosol Sci. Technol., 37, 53-64.
Metzger, S. M., F. J. Dentener, J. Lelieveld, and S. N. Pandis (2002) Gas-Aerosol Partitioning I: A computationally efficient model, J. Geophys. Res., 107, no. 4312.
Raymond T. and S. N. Pandis (2002) Cloud activation of single-component organic aerosol particles, J. Geophys. Res., 107, no. 4787.
Lipsky E., C. O. Stanier, S. N. Pandis, and A. L. Robinson (2002) Effects of sampling conditions on the size distribution of fine particulate matter emitted from a pilot-scale pulverized-coal combustor, Energy & Fuels, 16, 302-310.
Cabada J. C., S. N. Pandis, and A. L. Robinson (2002) Sources of atmospheric particulate matter in Pittsburgh, Pennsylvania, J. Air Waste. Man. Assoc., 52, 732-741.
Moya M., S. N. Pandis, M. Jacobson (2002) Is the size distribution of urban aerosol determined by thermodynamic equilibrium? An application to Southern California, Atmos. Environ., 36, 2349-2365.
Bilde M. and S. N. Pandis (2001) Evaporation rates and vapor pressures of individual aerosol species formed in the atmospheric oxidation of a-pinene and b-pinene, Environ. Sci. Technol., 35, 3344-3349.
Fahey K. M. and S. N. Pandis (2001) Optimizing model performance: Variable size resolution in cloud chemistry modeling, Atmos. Environ., 35, 4471-4478.
Moya M., A. S. Ansari, and S. N. Pandis (2001) Partitioning of nitrate and ammonium between the gas and aerosol phases during the1997 IMADA-AVER study in Mexico City, Atmos. Environ., 35, 1791-1804.
Cruz C. N. and S. N. Pandis (2000) Deliquescence and hygroscopic growth of mixed inorganic-organic atmospheric aerosol, Environ. Sci. Technol., 34, 4313-4319.
Kasibhatla P., H. Levy II, W. J. Moxim, S. N. Pandis, J. J. Corbett, M. C. Peterson, R. E. Horvath, and D. D. Parish (2000) Do emissions from ships have a significant impact on concentrations of nitrogen oxides in the marine boundary layer?, Geophys. Res. Let., 27, 2229-2232.
Cruz C. N., K. G. Dassios, and S. N. Pandis (2000) The effect of dioctyl phtalate films on ammonium nitrate aerosol evaporation rate, Atmos. Environ., 34, 3897-3905.
Capaldo K., C. Pilinis, and S. N. Pandis (2000) A computationally efficient hybrid approach for the simulation of dynamic gas/aerosol transfer in air quality models, Atmos. Environ., 34, 3617-3627.
Pilinis C., K. Capaldo, A. Nenes, and S. N. Pandis (2000) MADM- A new multicomponent atmospheric aerosol dynamics model, Aerosol Sci. Tech., 32, 482-502.
Ansari A. and S. N. Pandis (2000) The effect of metastable equilibrium states on the partitioning of nitrate between the gas and aerosol phases, Atmos. Environ., 34, 157-168.
Ansari A. S. and S. N. Pandis (2000) Water absorption by secondary organic aerosol and its effect on inorganic aerosol behavior, Environ. Sci. Technol., 34, 71-77.
Strader R., F. Lurmann and S. N. Pandis (1999) Evaluation of secondary organic aerosol formation in winter, Atmos. Environ., 33, 4849-4863.
Lillis D., C. Cruz, J. Collett Jr., L. W. Richards, and S. N. Pandis (1999) Production and removal of aerosol in a polluted fog layer. Model evaluation and fog effect on PM, Atmos. Environ., 33, 4797-4816.
Collett J. Jr., K. J. Hoag, X. Rao, and S. N. Pandis (1999) Internal acid buffering in San Joaquin Valley fog drops and its influence on aerosol processing, Atmos. Environ., 33, 4833-4847.
Hoag K. J., Collett J. Jr., and S. N. Pandis (1999) The influence of drop size-dependent fog chemistry on aerosol processing by San Joaquin Valley fogs, Atmos. Environ., 33, 4817-4832.
West J., A. Ansari, and S. N. Pandis (1999) Marginal PM2.5 – Nonlinear aerosol mass response to sulfate reductions, J. Air Waste Man. Assoc., 49, 1415-1424.
Cruz C. and Spyros N. Pandis (1999) Condensation of organic vapors on an externally mixed aerosol population, Aerosol Sci. Technol., 31, 392-407.
Capaldo K., J. J. Corbett, P. Kasibhatla, P. Fischbeck, and S. N. Pandis (1999) Effects of ship emissions on sulphur cycling and radiative climate forcing over the ocean, Nature, 400, 743-746.
Dassios K. and S. N. Pandis (1999) The mass accommodation coefficient of ammonium nitrate aerosol, Atmos. Environ., 33, 2993-3003.
Corbett J., P. S. Fishbeck, and S. N. Pandis (1999) Global nitrogen and sulfur emission inventories for oceangoing ships, J. Geophys. Res., 104, 3457-3470.
Nenes T., C. Pilinis, and S. N. Pandis (1999) Continued development and testing of a new thermodynamic aerosol module for urban and regional air quality models, Atmos. Environ., 33, 1553-1560.
Capaldo K., P. Kashibhatla, and S. N. Pandis (1999) Is aerosol production within the remote marine boundary layer sufficient to maintain observed concentrations?, J. Geophys. Res., 104, 3483-3500.
Gurciullo C. S., H. Sievering, and S. N. Pandis (1999) Heterogeneous sulfate production in the remote marine environment, J. Geophys. Res., 104, 21,719-21,731.
Ansari A. and S. N. Pandis (1999) An analysis of four models predicting the partitioning of semivolatile inorganic aerosol components, Aerosol Sci. Tech., 31, 129-153.
Ansari A. and S. N. Pandis (1999) Prediction of multicomponent inorganic atmospheric aerosol behavior, Atmos. Environ., 31, 745-757.
Ansari A. and S. N. Pandis (1998) Response of inorganic particulate matter concentrations to precursor concentrations, Environ. Sci. Technol., 32, 2706-2714.
Cruz C. N. and S. N. Pandis (1998) The effect of organic coatings on the cloud condensation nuclei activation of inorganic atmospheric aerosol, J. Geophys. Res. , 103, 13111-13123.
Weber R. J., M. R. Stolzenburg, S. N. Pandis, and P. H. McMurry (1998) Inversion of ultrafine condensation nucleus counter pulse height distributions to obtain nano-particle (3 to 10 nm) size distributions, J. Aerosol Sci., 29, 601-615.
West J., C. Pilinis, A. Nenes, and S. N. Pandis (1998) The marginal direct radiative forcing of atmospheric aerosols, Atmos. Environ, 32, 2531-2542.
Nenes T., C. Pilinis, and S. N. Pandis (1998) ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosol, Aqua. Geochem., 4, 123-152.
Pandis S. N. (1997) Formation and Properties of Secondary Atmospheric Aerosol: From the Laboratory to the Super-computer, J. Aerosol Sci., 28, S367-370.
Capaldo K. and S. N. Pandis (1997) Evaluation of sulfur chemistry mechanisms for the remote marine atmosphere, J. Geophys. Res., 102, 23251-23267.
Bowman F., J. Odum, S. N. Pandis, and J. H. Seinfeld (1997) Mathematical Model for gas-particle partitioning of secondary organic aerosols, Atmos. Environ., 31, 3921-3931.
Lurmann F. W., A. S. Wexler, S. N. Pandis, S. Musarra, N. Kumar, and J. H. Seinfeld (1997) Modeling urban and regional aerosols: II. Application, Atmos. Environ., 31, 2695-2715.
Cruz C. N. and S. N. Pandis (1997) A study of the ability of secondary organic aerosol to act as cloud condensation nuclei, Atmos. Environ., 31, 2205-2214.
Gurciullo C. S. and S. N. Pandis (1997) The effect of composition variations in cloud droplet populations on Aqueous-Phase Chemistry, J. Geophys. Res., 102, 9375-9386.
Bergin M. H., S. N. Pandis, C. I. Davidson, J. L. Jaffrezo, J. E. Dibb, A. G. Russell, and H. D. Kuhns (1996) Mathematical Modeling of Fog Processing of Trace Species at Summit, Greenland, J. Geophys. Res., 101, 14,465-14,478.
Bergin M. H., C. I. Davidson, J. E. Dibb, J. L. Jaffrezo, H. D. Kuhns, and S. N. Pandis (1995) A simple model to estimate atmospheric concentrations of aerosol chemical species based on snow core chemistry at Summit, Greenland, Geophys. Res. Lett., 22, 3517-3520.
Bergin M. H., J. L. Jaffrezo, C. I. Davidson, J. E. Dibb, S. N. Pandis, R. Hillamo, W. Maenhaut, H. D. Kuhns and T. Makela (1995) The Contribution of Snow, Fog and Dry Deposition to the Summer Flux of Anions and Cations at Summit, Greenland, J. Geophys. Res., 100, 16,275-16,288.
Pilinis C., J. H. Seinfeld, and S. N. Pandis (1995) On the Sensitivity of Direct Climate Forcing by Atmospheric Aerosols, J. Geophys. Res., 100, 18,739-18,754.
Pandis S. N., Wexler A. S. and Seinfeld J. H. (1995) Dynamics of tropospheric aerosol, J. Phys. Chem., 99, 9646-9659.
Seinfeld J. H., J. M. Andino, F. M. Bowman, H. J. L. Foster and S. N. Pandis (1994) Tropospheric Chemistry, Adv. Chem. Engng., 19, 325-407.
Russell L. M., Pandis S. N. and Seinfeld J. H. (1994) Aerosol Production and Growth in the Marine Boundary Layer, J. Geophys. Res., 99, 20989-21004.
Pandis S. N., Russell L. M. and Seinfeld J. H. (1994) The Relationship Between the DMS Flux and the CCN Concentration in Remote Marine Regions, J. Geophys. Res., 99, 16945-16957.
Pandis S. N., Wexler A. and Seinfeld J. H. (1993) Secondary Organic Aerosol Formation and Transport. II. Predicting the Ambient Secondary Aerosol Size Distribution, Atmospheric Environment, 27A, 2403-2416.
Palen E. J., Allen D. T., Pandis S. N., Paulson S. E., Seinfeld J. H. and Flagan R. C. (1993) FTIR Analysis of Aerosol Formed in the Photooxidation of 1 Octene, Atmospheric Environment, 27A, 1471 1477.
Sievering H., Boatman J., Gorman E., Kim Y., Anderson L., Ennis G., Luria M. and Pandis S. N. (1992) Removal of sulfur from the marine boundary layer by ozone oxidation in sea salt aerosols, Nature, 360, 571 573.
Pandis S. N., Harley R. A., Cass G. R. and Seinfeld J. H. (1992) Secondary Organic Aerosol Formation and Transport, Atmospheric Environment, 26, 2266 2282.
Pandis S. N., Seinfeld J. H. and Pilinis C. (1992) Heterogeneous Sulfate Production in an Urban Fog, Atmospheric Environment, 26, 2509 2522.
Pandis S. N. and Seinfeld J. H. (1992) One More Reason for the Deviation of Bulk Cloudwater or Fogwater Samples from Henry’s Law Equilibrium. J. Geophys. Res., 97, 6079 6081.
Palen E. J., Allen D. T., Pandis S. N., Paulson S. E., Seinfeld J. H. and Flagan R. C. (1992) FTIR Analysis of Aerosol Formed in the Photooxidation of Isoprene and b pinene, Atmospheric Environment, 26A, 1239 1251.
Pandis S. N. and Seinfeld J. H. (1991) Should Bulk Cloudwater or Fogwater Samples Obey Henry’s Law? Journal of Geophysical Research, 96, 10,791 10,798.
Pandis S. N., Baltensperger U., Wolfenbarger K. J. and Seinfeld J. H. (1991) Inversion of Aerosol Data from the Epiphaniometer, J. Aerosol Sci., 22, 417-428.
Pandis S. N., Paulson S. E., Flagan R. and Seinfeld, J. H. (1991) Aerosol Formation in the Photooxidation of Isoprene and b-pinene, Atmospheric Environment, 25A, 997 1008.
Paulson S. E., Pandis S. N., Baltensperger U., Seinfeld J. H., Flagan R. C., Palen E. J., Allen D. T., Schaffner C., Giger W. and Portmann A. (1990) Characterization of Photochemical Aerosols from Biogenic Hydrocarbons, J. Aerosol Sci., 21, S245 S248.
Pandis S. N., Pilinis C. and Seinfeld J. H. (1990) The Smog Fog Smog Cycle and Acid Deposition, Journal of Geophysical Research, 95, 18489 18500.
Pandis S. N. and Seinfeld J. H. (1990) On the Interaction between Equilibration Processes and Wet or Dry Deposition, Atmospheric Environment, 24A 2313-2327.
Pandis S.N., Seinfeld J. H. and Pilinis C. (1990) Chemical Composition Differences in Fog and Cloud Droplets of Different Sizes, Atmospheric Environment, 24A, 1957 1969.
Pandis S.N. and Seinfeld J. H. (1989) Mathematical Modeling of Acid Deposition due to Radiation Fog, Journal of Geophysical Research, 94, 12911 12923.
Pandis S.N. and Seinfeld J. H. (1989) Sensitivity Analysis of a Chemical Mechanism for Aqueous Phase Atmospheric Chemistry, Journal of Geophysical Research, 94, 1105 1126.