Current Projects

European projects


The Effects on Air quality of Semi-VOLatile Engine Emissions (EASVOLEE) project brings together leading European research groups, with state-of the-art observational and modeling facilities to: i) Quantify the contributions of secondary aerosol formation from transport engines to air quality problems in Europe. ii) Develop and identify health-related metrics, mitigation strategies, and policies to improve air quality, limiting the concentrations of aerosol (organic, inorganic, nanoparticles). The project combines state-of-the art measurement of the complete suite of emissions of transport engines under real driving conditions, investigations of the formation of secondary particulate matter (PM) during their atmospheric processing, and studies of the toxicity of both the fresh and aged PM and of the mechanisms that affect health. These results will be used to improve chemical transport models that in turn will allow us to quantify the effects of engine emissions on air quality and health – both now and for a series of future scenarios. EASVOLEE will improve our understanding of organic emissions from vehicle exhaust including low-volatility (LVOCs), semi-volatile (SVOCs), intermediate volatility (IVOCs) and volatile organic compounds (VOCs). It will elucidate the corresponding secondary aerosol formation (both organic and inorganic) and characterize the health effects of these primary and secondary particles. The contribution of engine exhaust emissions to PM2.5 and size-resolved particle number concentrations in Europe will be quantified during all seasons. The above scientific evidence will be used to investigate the effectiveness of policies to reduce secondary organic and inorganic PM levels in urban areas – with a focus on components impacting health. Finally, EASVOLEE will develop new approaches to improve the quantification of transport impacts on air quality and health effects supporting future emissions and climate legislation.


While the number and types of indoor air pollutants is rising, much is suspected but little is known about the impact of their potentially synergistic interactions, upon human health. Highly susceptible populations include children, allergy and asthma sufferers, and a low socioeconomic background, however no specific guidance is available. SynAir-G aims to reveal and quantify synergistic interactions between different pollutants affecting health, from mechanisms to real-life, focusing on the school setting. We will develop a comprehensive and responsive multipollutant monitoring system, advance environmentally friendly interventions, and disseminate the generated knowledge to relevant stakeholders in accessible and actionable formats. To achieve these objectives, SynAir-G will construct and deploy novel and improved sensors of chemical and biological (allergens, microbes) pollutants. These will be tested in a real-world setting, in participating schools of 5 countries around Europe and eventually combined into a multisensing platform. In the same setting, pollutants will be linked to their sources and two eco-friendly air-purifying devices will be assessed. Health outcome data will be obtained from children using a gamified app and prospective monitoring, respecting privacy. Highly susceptible children, such as those with allergy or asthma, will act as sentinels to increase sensitivity of the system, that will be able to provide stratified (susceptibility-specific) alerts. Explainable AI will support the near-real time analysis and response. In parallel, cell and mouse models will evaluate the mechanisms and complex dose-responses of the synergistic parameters. SynAir-G will thus provide FAIR data on air pollutants and their sources, a comprehensive and personalized user-friendly solution to monitoring indoor air quality, and proposals for possible interventions and an improved regulatory framework, robustly supporting the Zero Pollution Action Plan. SynAir-G is part of the Indoor air and health cluster.


The main objective of Research Infrastructures Services Reinforcing Air Quality Monitoring Capacities in European Urban & Industrial AreaS (RI-URBANS) is to develop Service Tools (STs) that will provide novel insights into spatio-temporal variability of air quality parameters, population exposure and air quality health interactions. This will enable to reduce air pollution effects in European cities and industrial hotspots. The project takes on board advanced research-driven Air Quality (AQ) observations at selected European pilot cities. By combining Air Quality Monitoring Networks (AQMNs) and RIs advanced science knowledge and innovative technologies, RI-URBANS deploys tools and information systems in the hands of citizens and communities to support decision-making by AQ managers and regulators. These will enhance the AQMNs capacity to evaluate, predict and mitigate the impact of AQ on human health.


ATMO-ACCESS is the organized response of distributed atmospheric research facilities for developing a pilot for a new model of Integrating Activities. The project will deliver a series of recommendations for establishing a comprehensive and sustainable framework for access to distributed atmospheric Research Infrastructures (RI), ensuring integrated access to and optimised use of the services they provide. It will develop and test innovative modalities of access to facilities and complementary to more advanced services, including digital services, developed as part of cross-RI efforts. Project’s research facilities includes ground-based observation stations, simulation chambers, but also mobile facilities and central laboratories that are fundamental elements in distributed RIs.


Chronic obstructive pulmonary disease and cystic fibrosis are two highly debilitating chronic respiratory diseases sharing common characteristics, yet presenting opposite roots: the former appears to be intricately related to the exposome while the latter not. The EU-funded REMEDIA project is developing approaches combining the collection of exposome and clinical data, advanced machine learning, the use of atmospheric simulation chambers, and the development of individual sensor devices, in order to address the impact of exposome on the course of these two lung diseases.


The EU-funded FORCeS project aims to detect essential processes that influence aerosol radiative forcing and study data related to aerosols and clouds’ impacts on climate during recent decades. The project will organize workshops among leading European climate scientists and climate specialists aiming to improve European climate models. FORCeS will identify key processes governing aerosol radiative forcing, as well as climate feedbacks related to aerosols and clouds, and improve the knowledge about these processes by bringing together leading European scientists.

Greek Projects


The Chemical Evolution of Gas-and Particulate-Phase Organic Pollutants in the Atmosphere (CHEVOPIN) project will allow the assessment of the effectiveness of policies in-place and the better design of future policies to improve air quality but also to reduce the damages due to climate change. Policy making will be influenced by the CHEVOPIN outcomes; directly by public outreach, and providing relevant results to policy makers, and indirectly by delivering relevant scientific studies to international assessments and organizations that in turn are important in international and European policy making.

NANOSOMs   The objectives of NANOSOMs are: (i) The development and evaluation of accurate and cost-effective techniques for the measurement of PM0.1 concentration, composition, physical, and toxicological properties. (ii) The quantification of the temporal and spatial variability of PM0.1 and its sources in selected urban, suburban and rural areas (iii) The development and evaluation of the next generation of an urban/regional chemical transport model for the simulation of PM0.1. (iv) The quantification of the importance of the various sources and formation pathways of PM0.1 in Europe, and its sensitivity to emissions. (v) The linking of exposure to PM0.1 to the PM health effects. (vi) The identification of strategies that lead to reductions of PM0.1 in Europe. The proposed work involves a combination of laboratory measurements for the development of new experimental techniques, field measurements, chemical transport model development, and modelling in urban and regional scales. Therefore, it will span the system scales starting from the nanoscale to thousands of kilometers.


The project with the acronym ‘PANSEN’ has been funded through donations from the Public Benefit Foundation under the name ‘Bodosaki Foundation’ and the Public Benefit Foundation under the name ‘Public Benefit Foundation of Social and Cultural Work.’ Its purpose is to establish a Nationwide Network for Measuring Suspended Particulate Matter with Low-Cost Sensors. Continuous measurements will be available in real-time on an online platform, accessible to both local and national authorities for identifying issues and improving air quality.

Scroll to Top